Code show/hide
# Import SEER data set, n=2041
<- read.csv("data/EsoSurgery.csv")
Surgery options(prType='html')
html(describe(Surgery), scroll=TRUE)
8 Variables 2041 Observations
D30
n | missing | distinct | Info | Sum | Mean | Gmd |
---|---|---|---|---|---|---|
2041 | 0 | 2 | 0.29 | 221 | 0.1083 | 0.1932 |
AGE
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2041 | 0 | 801 | 1 | 73.5 | 6.723 | 65.83 | 66.42 | 68.58 | 72.42 | 77.25 | 81.91 | 85.17 |
COMORBI
n missing distinct Info Mean Gmd .05 .10 .25 2041 0 393 0.737 0.2983 0.4589 0.0000 0.0000 0.0000 .50 .75 .90 .95 0.0000 0.3756 1.0000 1.1968lowest : 0 0.179426 0.182296 0.189824 0.193299 , highest: 2.14073 2.15795 2.15974 2.21896 3
CPD
n missing distinct Info Mean Gmd .05 .10 .25 2041 0 376 0.591 0.09873 0.1718 0.00000 0.00000 0.00000 .50 .75 .90 .95 0.00000 0.07714 0.16931 1.00000
Value 0.00 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 Frequency 1514 5 17 32 29 35 28 56 40 30 29 25 Proportion 0.742 0.002 0.008 0.016 0.014 0.017 0.014 0.027 0.020 0.015 0.014 0.012 Value 0.17 0.18 0.19 0.20 0.21 0.22 0.23 1.00 Frequency 18 11 7 5 2 3 2 153 Proportion 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.075For the frequency table, variable is rounded to the nearest 0.01
Cardio
n missing distinct Info Mean Gmd .05 .10 .25 2041 0 374 0.593 0.09677 0.1702 0.0000 0.0000 0.0000 .50 .75 .90 .95 0.0000 0.0536 0.1692 1.0000
lowest : | 0 | 0.0425048 | 0.0433258 | 0.0447525 | 0.0448201 |
highest: | 0.296846 | 0.299705 | 0.325783 | 0.36526 | 1 |
Diabetes
n missing distinct Info Mean Gmd .05 .10 .25 2041 0 378 0.594 0.09295 0.1641 0.0000 0.0000 0.0000 .50 .75 .90 .95 0.0000 0.0566 0.1304 1.0000
Value 0.00 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 Frequency 1511 5 33 59 54 47 35 33 24 32 19 12 Proportion 0.740 0.002 0.016 0.029 0.026 0.023 0.017 0.016 0.012 0.016 0.009 0.006 Value 0.15 0.16 0.17 0.18 0.19 0.20 1.00 Frequency 7 7 3 2 3 1 154 Proportion 0.003 0.003 0.001 0.001 0.001 0.000 0.075For the frequency table, variable is rounded to the nearest 0.01
Liver
n missing distinct Info Mean Gmd .05 .10 .25 2041 0 391 0.474 0.002736 0.005334 0.000000 0.000000 0.000000 .50 .75 .90 .95 0.000000 0.000000 0.001706 0.005047
lowest : | 0 | 0.000277464 | 0.000284278 | 0.000291895 | 0.000293725 |
highest: | 0.024005 | 0.0259095 | 0.0290324 | 0.0364262 | 1 |
Renal
n missing distinct Info Mean Gmd .05 .10 .25 2041 0 391 0.48 0.007155 0.01381 0.000000 0.000000 0.000000 .50 .75 .90 .95 0.000000 0.000000 0.007221 0.012013
lowest : | 0 | 0.000242474 | 0.000406405 | 0.000550073 | 0.00060003 |
highest: | 0.0391617 | 0.0409958 | 0.0413482 | 0.0746603 | 1 |
Code show/hide
<- lrm(D30~COMORBI, data=Surgery)
fit1 print(fit1)
Logistic Regression Model
lrm(formula = D30 ~ COMORBI, data = Surgery)
Model Likelihood Ratio Test |
Discrimination Indexes |
Rank Discrim. Indexes |
|
---|---|---|---|
Obs 2041 | LR χ2 13.99 | R2 0.014 | C 0.549 |
0 1820 | d.f. 1 | R21,2041 0.006 | Dxy 0.098 |
1 221 | Pr(>χ2) 0.0002 | R21,591.2 0.022 | γ 0.162 |
max |∂log L/∂β| 3×10-9 | Brier 0.096 | τa 0.019 |
β | S.E. | Wald Z | Pr(>|Z|) | |
---|---|---|---|---|
Intercept | -2.2643 | 0.0850 | -26.65 | <0.0001 |
COMORBI | 0.4443 | 0.1129 | 3.93 | <0.0001 |